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Magnetic Forces 
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• We use the figure to illustrate a simple example.   
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Magnetic Force on a Conductor 
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We use the expression,  dvBjF   
Integrated over the volume of the conductor.   
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L is the length into the paper.   
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Magnetic Force on a Pole 
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We use the expression,  dvHF    

h

B
ρ 0where the magnetic charge density  is given by,  

The force is in the same direction as the H vector and is attractive.   
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Pressure 
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The magnitudes of the repulsive pressure for the current and the attractive 
pressure at the pole are identical.  In general, the pressures parallel to the 
field lines are attractive and the forces normal to the field lines are 
repulsive.  The pressure is proportional to the flux density squared.  
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Example 
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Let us perform a calculation for a flux density of 5 kG = 0.5T.   
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Magnet Stored Energy 
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• The magnet stored energy is given by;    HBdvU
2

1

the volume integral of the product of H and B.   

Consider a window frame dipole field (illustrated earlier) with uniform field in 
the space between the coil.  If we ignore the field in the coil and in the iron,  
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Magnet Inductance and Ramping Voltage 
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Inductance is given by,  
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In fast ramped magnets, the resistive term is small.   
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Substituting,  



Units and Design Options 
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The units are,   
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Given the field = B0, pole width = a, Magnet Length = L and ramp time,  t, the 
only design option available for changing the voltage is the number of turns, N.   



Other Magnet Geometries 
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Normally, the stored energy in other magnets (ie. H dipoles, quadrupoles 
and sextupoles) is not as easily computed.  However, for more complex 
geometries, two dimensional magnetostatic codes will compute the 
stored energy per unit length of magnet.  



Effective Length 
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Fringe Fields and Effective Lengths 

• Often, canonical rules of thumb are adopted in order to estimate 
the effective length of magnets.   

– Dipole fringe field length = 1 half gap at each end 

– Quadrupole fringe field length = 1/2 pole radius at each end. 

– Sextupole fringe field length = 1/3 pole radius at each end.   
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Three Dimensional Fringe Fields 

The shape of the three dimensional fringe field 
contributes to the integrated multipole error of a 
magnet.  

US Particle Accelerator School – Grand Rapids, MI – June 2012 14 



• Dipole Fringe Field 

– Typically, the fringe 
field is longer at the 
center of the magnet 
and drops off near the 
edges.   

– This distribution is 
approximately 
quadratic and the 
integrated multipole 
field looks like a 
sextupole field.   
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Virtual Field Boundary 
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• The photograph shows a 
removable insert with a 
machined chamfer installed 
on the SPEAR3 prototype 
gradient magnet.   

• The shape of the chamfer 
depth was determined 
empirically and was 
approximately parabolic.  It 
was designed to reduce the 
integrated sextupole field.   

• The chamfer shape was 
machined onto the end packs 
of subsequently 
manufactured production 
magnets.    
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Quadrupole 3-Dimensional Fringe Field 

• The quadrupole “gap” is 

largest at its center.  The 

gap decreases as the 

distance from its center 

(g1>g2>g3>g4>g5>g6).  

Since the fringe field is 

roughly proportional to the 

magnet gap, it is longest 

near the magnet pole center.  g1
g2

g3
g4 g5 g6
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Quadrupole Chamfer 

• The quadrupole pole 
chamfer is a straight 
angled cut, which 
shortens the pole at its 
center.  The angle is cut 
such that the pole is 
longer near its edge.   

• Again, this cut was 
determined empirically 
by trial an error, 
minimizing the n=6 
integrated multipole 
error.   
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Harmonics as function of the end 
chamfer length 
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Ideal end chamfer length as function 
of quadrupole length 
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Effective length as function of the end 
chamfer length 
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Multipoles as function of the coil 
excitation 
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Dynamic effects 
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Dynamic effects 
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Be (x=0) (theoretical) 0.0129 (T)

Be (x=0) (FEMM) 0.0127 (T)

Bo(T) 0.145

frequency (Hz) 100

tk (mm) 3

g (mm) 25

w (mm) 28

 (MS/m) 1.334



Real-case example 
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Real-case example 

US Particle Accelerator School – Grand Rapids, MI – June 2012 27 

thickness = 1 mm

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

-30 -20 -10 0 10 20 30
x (mm)

B
y

 (
T

)

400 Hz

350 Hz

300 Hz

250 Hz

200 Hz

150 Hz

100 Hz

90 Hz

80 Hz

70 Hz

60 Hz

50 Hz

40 Hz

30 Hz

20 Hz

10 Hz

thickness = 2 mm

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

-30 -20 -10 0 10 20 30
x (mm)

B
y
 (

T
)

400 Hz

350 Hz

300 Hz

250 Hz

200 Hz

150 Hz

100 Hz

90 Hz

80 Hz

70 Hz

60 Hz

50 Hz

40 Hz

30 Hz

20 Hz

10 Hz

thickness = 3 mm

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

-30 -20 -10 0 10 20 30
x (mm)

B
y
 (

T
)

400 Hz

350 Hz

300 Hz

250 Hz

200 Hz

150 Hz

100 Hz

90 Hz

80 Hz

70 Hz

60 Hz

50 Hz

40 Hz

30 Hz

20 Hz

10 Hz

thickness = 4 mm

-0.070000

-0.060000

-0.050000

-0.040000

-0.030000

-0.020000

-0.010000

0.000000

-30 -20 -10 0 10 20 30
x (mm)

B
y

 (
T

)

400 Hz

350 Hz

300 Hz

250 Hz

200 Hz

150 Hz

100 Hz

90 Hz

80 Hz

70 Hz

60 Hz

50 Hz

40 Hz

30 Hz

20 Hz

10 Hz



x = 20 mm

0.00

0.20

0.40

0.60

0.80

1.00

0 100 200 300 400

f (Hz)

B
y
(f

)/
B

y
(0

 H
z
)

4 mm

3 mm

2 mm

1 mm

US Particle Accelerator School – Grand Rapids, MI – June 2012 28 

x = 0 mm
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Real-case example 



Phase delay 
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Attenuation due to lamination on the 
material 
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Real-case example summary 
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Vacuum 
chamber 
thickness 

 2 mm 3 mm 

Core 
lamination 
thickness 

  
  

0.60 0.54 

0.5 mm 0.67 0.40 0.36 

1.0 mm 0.46 0.27 0.25 

@400 Hz 



Induced sextupolar field due to eddy 
currents 
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F=1 when g<<w, and F=2 for a circular chamber 
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Example – Alba booster dipole 
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 11.4592 (m) 

o 410-7 (H/m) 

 1.344 (MS/m) 

Freq.         3 (Hz) 

Be 0.029 (T) 

Bi 0.873 (T) 

20 mm 

30 mm 

17 mm 

50 mm 

VC1 

VC2 

  F 

VC1 1.5739 

VC2 1.2141 



Summary 
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This chapter showed a collection of “loose-ends” calculations: 
 

• Magnetic Forces 
• Stored Energy and Inductance 
• Fringe Fields 
• End Chamfering 
• Eddy Currents 

 
Those effects have an impact in the magnet design but also need to be 
taken into consideration into the magnet fabrication, power supply 
design, vacuum chamber design and beam optics. 



Next… 
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Magnetic measurements 


